Feynman’s Lectures Exercises 8.2
A moving particle collides perfectly elastically with an equally massive particle initially at rest. Show that the two particles move at right angles to one another after the collision.
From conservation of momentum, we write the equations for the x and y axes:
v10=v1′cosα+v2′cosβ=v1′sinα−v2′sinβ
From the second equation:
v1′sinα=v2′sinβ
This gives:
v2′v1′=sinαsinβ
Now, from conservation of kinetic energy:
21mv12v12=21mv1′2+21mv2′2=v1′2+v2′2
Square the momentum equation and substitute v12:
(v1′cosα+v2′cosβ)2v1′2cos2α+v2′2cos2β+2v1′v2′cosαcosβ=v12=v1′2+v2′2
Rearranging:
2v1′v2′cosαcosβ2v1′v2′cosαcosβ=v1′2(1−cos2α)+v2′2(1−cos2β)=v1′2sin2α+v2′2sin2β
Divide both sides by v1′v2′:
2cosαcosβ=v2′v1′sin2α+v1′v2′sin2β
Use the earlier ratio:
v2′v1′=sinαsinβ
Substitute:
2cosαcosβ=2sinαsinβ
So:
cosαcosβ−sinαsinβ=0
This gives:
cos(α+β)=0
Therefore:
α+β=90∘
The two particles move at right angles after the collision.
A more elegant solution can be found in Feynman’s Lectures Exercises 8.2 via the Center-of-Mass Frame.