Feynman’s Lectures Exercises 8.2

‌A moving particle collides perfectly elastically with an equally massive particle initially at rest. Show that the two particles move at right angles to one another after the collision.

From conservation of momentum, we write the equations for the xx and yy axes:

v1=v1cosα+v2cosβ0=v1sinαv2sinβ

From the second equation:

v1sinα=v2sinβ

This gives:

v1v2=sinβsinα

Now, from conservation of kinetic energy:

12mv12=12mv12+12mv22v12=v12+v22

Square the momentum equation and substitute v12v_1^2:

(v1cosα+v2cosβ)2=v12v12cos2α+v22cos2β+2v1v2cosαcosβ=v12+v22

Rearranging:

2v1v2cosαcosβ=v12(1cos2α)+v22(1cos2β)2v1v2cosαcosβ=v12sin2α+v22sin2β

Divide both sides by v1v2v_1' v_2':

2cosαcosβ=v1v2sin2α+v2v1sin2β

Use the earlier ratio:

v1v2=sinβsinα

Substitute:

2cosαcosβ=2sinαsinβ

So:

cosαcosβsinαsinβ=0

This gives:

cos(α+β)=0

Therefore:

α+β=90

The two particles move at right angles after the collision.

A more elegant solution can be found in Feynman’s Lectures Exercises 8.2 via the Center-of-Mass Frame.